

$6 \int$ Everything shoulo be made as simple as possible, but not simpler

- Albert Einstein (simplest attribution)

What is Social Science?

social science

noun

noun: social science
the scientific study of human society and social relationships.

- a subject within the field of social science, such as economics or politics. plural noun: soclal sciences

Social Science

Surveys

Interviews
Participant observations
Document analysis
...

What is

complexity?

complexity
 /kam'pleksati/ 4)
 noun

the state or quality of being intricate or complicated.
"an issue of great complexity"
synonyms: complication, problem, difficulty, twist, turn, convolution, entanglement; More

- a factor involved in a complicated process or situation.
plural noun: complexities
"the complexities of family life"

Activity 1

- Why might social science need complexity science?
- Write down 5 reasons

What is complexity?

complexity

/kəm'pleksəti/ \&)
noun

- a property of a system (of systems) resulting from the parts and the relationships between system parts. Complexity leads to the impossibility to partition the system to analyse parts in isolation.

Social Systems

Social Systems

Heterogeneity

The Good Little Church Girl

The One That The One That
Always Swears

The Grumpy One

The Goodie Two Shoes

The One You Can Depend On
 One
 The Ladies Man

Social Systems

Heterogeneity Relationships

Social Systems

Heterogeneity Relationships Social Influence

Social Systems

Heterogeneity Relationships Social Influence Dynamics

Social Systems

Heterogeneity
Relationships
Social Influence Dynamics
Emergence

gifs com

Social Systems

Create emergency lane immediately in case of traffic jam.

Heterogeneity Relationships Social Influence Dynamics Emergence Imergence

As soon as one thinks

"social system" one

Complexity

. . . it's (not just) complicated!

4．Levers atad Hubs	5．Property non－linearity	6．Oomains of stablity／atuacters
\therefore（5）\rightarrow 陣造 析 \therefore 和 \boldsymbol{R} • $\chi \infty+\cdots$ $\Rightarrow=0 \%$ \％ $2=$ ∞ 为		 （8） $0^{\circ} 2$
7．Adaptaijon	8．Pailiand pali depembency	9．Tipping poins
10 Bcundaies／Thresholts	11．Clange uver line	12 Open System
 8） -1 $0-\infty+0$ （ -2 $368=$ \leftrightarrow \qquad （2）	\＆－Dr 0×6 \qquad ex \qquad \qquad	

Complexity？

－Feedback xi co co 0.4
－Non－linearity $\xrightarrow{\text { run }}$

$\sqrt{\square} \sqrt{\square I}$
－Emergence
－Change over time －or or 然路 Whin
－Adaptation
whiff o- 回回口 咆)
－Path dependency
－Tipping points

Complexity？

－Feedback xi co co 0.4
－Non－linearity $\xrightarrow{\text { run }}$

$\sqrt{\square} \sqrt{\square I}$
－Emergence
－Change over time －or or 然路 Whin
－Adaptation
whiff o- 回回口 咆)
－Path dependency
－Tipping points

Complexity？

－Feedback
$\square \quad$ Run on a Bank（think Mary Poppins）
？

－Emergence

－Change over time

－Adaptation
，prof－o－回回口 呵 ）
－Path dependency
－Tipping points

Complexity?

- Feedback

Run on a Bank (think Mary Poppins) \square

-

- Non-linearity

Mobile Phone Uptake

- Emergence
- Change over time

- Adaptation

Complexity?

- Feedback

Run on a Bank (think Mary Poppins) \square

- Non-linearity
- Emergence
- Change over time
\& or
Traffic Jam

- Adaptation
- Path dependency
- Tipping points

Complexity？

－Feedback
Run on a Bank（think Mary Poppins） ：
－Non－linearity
－Emergence
－Change over time
Anything，really．．．
－Adaptation
－Path dependency
－Tipping points

- - 回回口

咆
）

Change over Time

Complexity?

- Feedback

Run on a Bank (think Mary Poppins) :

- Non-linearity
- Emergence
- Change over time
- Adaptation
- Path dependency
- Tipping points

Anything, really...

- Congestion Charge

Traffic Jam

Complexity?

- Feedback

Run on a Bank (think Mary Poppins) :

- Non-linearity
- Emergence
- Change over time
- Adaptation
- Path dependency
- Tipping points

Anything, really...

Congestion Charge

Microsoft

Complexity?

- Feedback
$\square \quad$ Run on a Bank (think Mary Poppins)
?
T.
- Non-linearity
- Emergence
- Change over time
- Adaptation
- Path dependency
- Tipping points

Anything, really...

Congestion Charge

Microsoft

Mobile Phone Uptake

© ${ }^{4}$ The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm.

- Bertrand Russell

Causality in Complex Systems

- X is a necessary and/or sufficient condition of Y
- If X had not occurred, Y would not have occurred.
- The conditional probability of Y given X is different from the absolute probability of $\mathrm{Y}(\mathrm{P}(\mathrm{YIX}) \diamond \mathrm{P}(\mathrm{Y}))$.
- X appears with a non-zero coefficient in a regression equation predicting the value of Y .
- There is a causal mechanism leading from the occurrence of X to the occurrence of Y.

X is a necessary and or sufficient condition of Y

Ceteris Paribus - all things being equal - but in a complex system there is no way to isolate for ceteris paribus.

If \mathbf{X} had not occurred, Y would not have occurred.

Multiple Causes - you don' even have lo go complex lo recognise multiple causes.

The conditional probability of Y given X is different from the absolute probability of $Y(P(Y \mid X)<>P(Y))$.
spurious altribution.

X appears with a non-zero coefficient in a regression equation predicting the value of Y

Correlation is not causakion.

There is a causal mechanism leading from the occurrence of X to the occurrence of Y.

Telling the causal story - but how do we make sure it is the right one?

Complexity Sensitive Social Science Methods

- Qualitative Comparative Analysis (QCA)
- Process Tracing
- Dependency Models/Bayesian Networks
- Agent-Based Modelling

QCA

- Grounded on multiple-conjunctural causality
- A.k.a. configurational, chemical causation
- Configurations of factors are causally related to outcomes, not single causes
- Even when you can disentangle the effect of a single cause, you can't take it away from its context (the other causes it's combined with)
- Hence "conjunctural"
- Causal asymmetry: causes can be only necessary, only sufficient, both or neither
- INUS and SUIN causes

Causal asymmetry, causal diversity

- If you light a match, you need the surface to be dry
- Fire powder AND dry surface AND the movement = FIRE
- While the above is sufficient, it's not necessary: there are other ways to get fire (hence multiple)
- Lighter: metal mechanism using flammable liquid (butane)
- INUS: some causes are necessary in a specific context but not in others
- The movement when you have a match AND the right dry surface
- Lighters only work with specific liquids
- SUIN: equivalent requirements. Different factors are good enough but one of these is required
- A dry surface is required, but different types of dry surface do the job

Data organisation and Calibration

Caseld	GOVCON	DIVEQ	GBVLAW	RES	CAM	CAP	NEWPOL	PJCAP
PL140001	1	0	1	1	0	1	1	1
PL140002	1	0	1	0	0	0	0	0
PL140007	1	0	1	0	0	0	0	1
PL140003	1	0	1	0	0	1	0	0
PL140015	1	0	1	1	0	1	1	0
PL140019	1	0	1	0	0	0	0	0
PL140004	1	0	1	0	0	0	0	0
RO20001	0	1	0	1	1	0	1	1
RO20006	0	1	0	0	1	0	0	0
RO20007	0	1	0	0	0	1	0	1
RO200015	0	1	0	0	1	1	0	1
RO20002	0	1	0	0	1	0	0	1
RO20003	0	1	0	0	0	0	0	0
R020010	0	1	0	0	1	0	0	0
BG120013	0	1	1	1	1	1	1	1
BG120022	0	1	1	0	0	1	0	1
BG120020	0	1	1	1	1	1	0	1
BG120016	0	1	1	0	1	1	0	1
BG120005	0	1	1	0	0	1	0	1
BG120018	0	1	1	1	1	1	0	1
SK090020	1	0	0	0	1	1	0	0
SK090013	1	0	0	0	1	1	0	0
SK090009	1	0	0	1	1	1	1	1
SK090008	1	0	0	0	1	1	0	0
SK090010	1	0	0	0	1	1	0	0
SK090004	1	0	0	0	1	1	0	0
SK090025	1	0	0	0	1	1	0	1
SK090014	1	0	0	0	1	1	0	0
EE110005	0	1	1	1	1	1	1	1
EE110006	0	1	1	1	1	1	1	1
EE110002	0	1	1	1	0	0	1	0
EE110001	0	1	1	1	1	1	1	1

Progressive, smart reduction of complexity

Combination					
ID	GBVLAW	RES	CAM	CAP	NEWPOL
1	0	0	1	1	0
2	1	1	1	1	C
3	1	0	0	0	0
4	1	0	0	1	0
5	0	0	1	0	0
6	1	1	0	1	1
7	1	1	0	0	1
8	1	0	1	1	0
9	0	1	1	1	1
10	0	1	1	0	1
11	0	0	0	1	0
12	0	0	0	0	0
13	1	1	1	0	$?$
14	1	0	1	0	$?$
15	0	1	0	1	$?$
16	0	1	0	0	$?$

Minimal combinations

CaseID	GBVLAW	RES	CAM	CAP	NEWPOL
1	-	0	1	1	0
2	1	0	0	-	0
3	0	0	-	0	0
4	1	1	0	-	1
5	0	1	1	-	1
6	0	0	0	-	0
CaseID	GBVLAW	RES	CAM	CAP	NEWPOL
1	-	0	-	1	0
2	-	0	0	-	0
3	0	0	-	-	0
4	1	1	0	-	1
5	0	1	1	-	1

The INUS Analysis

| CaseID | GBVLAW | RES | CAM | CAP | NEWPOL |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 2 | 1 | 1 | 1 | 1 | C |
| 3 | 1 | 0 | 0 | 0 | 0 |
| 4 | 1 | 0 | 0 | 1 | 0 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| 6 | 1 | 1 | 0 | 1 | 1 |
| 7 | 1 | 1 | 0 | 0 | 1 |
| 8 | 1 | 0 | 1 | 1 | 0 |
| 9 | 0 | 1 | 1 | 1 | 1 |
| 10 | 0 | 1 | 1 | 0 | 1 |
| 11 | 0 | 0 | 0 | 1 | 0 |
| 12 | 0 | 0 | 0 | 0 | 0 |
| 13 | 1 | 1 | 1 | 0 | $?$ |
| 14 | 1 | 0 | 1 | 0 | $?$ |
| 15 | 0 | 1 | 0 | 1 | $?$ |
| 16 | 0 | 1 | 0 | 0 | $?$ |

A progressive, smart reduction of complexity

Country	PAF	GWG	AID	EDU	OUT	Country	PAF	GWG	AID	EDU	OUT
Ethiopia	1	1	1	1	1	Ethiopia, Mozambique, Tanzania	1	1	1	1	1
Mozambique	1	1	1	1	1	Burkina Faso, Mali	1	1	1	0	1
Tanzania	1	1	1	1	1	Ghana, Senegal	1	1	0	1	1
Burkina Faso	1	1	1	0	1	Malawi	0	1	1	1	1
Mali	1	1	1	0	1	Niger	1	0	1	0	1
Ghana	1	1	0	1	1	Zambia	1	0	1	1	0
Senegal	1	1	0	1	1	Gambia	0	0	1	1	0
Malawi	0	1	1	1	1	Kenya, Lesotho	0	0	0	1	0
Niger	1	0	1	0	1	Botswana	0	0	0	0	0
Zambia	1	0	1	1	0						
Gambia	0	0	1	1	0						
Kenya	0	0	0	1	0						
Lesotho	0	0	0	1	0						
Botswana	0	0	0	0	0						
OUT $=$ AID*EDU*GWG (5) + AID*edu*PAF (3) + EDU*PAF*GWG (2)											

PAF (Int \#1)	GWG (Int \#2)	AID	EDU	OUT	\# cases covered
	\oplus		\pm	$\sqrt{ }$	5
t				$\sqrt{ }$	3
\oplus	\oplus		t	$\sqrt{ }$	2
			(t)		2
			(t)		2
					2

Generative/Mechanism-Based Causality

- Correlations and associations are not good enough
- Open the "black box" and investigate the "inner workings" that "generate" the effect
- High degree of precision is required
- "Magnifying lens"
- Ideally we want to observe the effect while it is being "caused"
- If not possible, we seek evidence that a specific process took place...

Process Tracing (with Bayesian Updating)

- Grounded on Generative Causality
- A.k.a. mechanism-based: how and why the outcome occurred, what generated the outcome
- The mechanism representation can take several forms
- The whole system, some of the cogs / wheels, a process
- In PT it is often represented as a process
- But that's just because it's easier to apply the method!
- Clear distinction between theory, data, and our levels of confidence
- Rigorous / replicable way of dealing with uncertainty
- Our confidence can be estimated with the Bayes formula

Basic elements of Process Tracing with BU

- Theory / mechanism / explanation / statement = ontological object
- Could be true, could be false. It's usually a statement about how things work
- Our confidence that the theory / statement, etc. is TRUE (or false)
- Two levels of confidence: one before observing empirical data, and one after
- Prior, Posterior (in Bayes formula the Posterior is a function of the Prior et al.)
- Empirical data / observations
- Organises data into categories, on the basis of two characteristics:
- Probative value (strength, weight of evidence);
- Whether data confirms / strengthens or disconfirms / weakens theory

Quali-quanti confidence translator

Practically certain that () is true	$0.99+$
Reasonably certain that () is true	$0.95-0.99$
Highly confident that () is true	$0.85-0.95$
Cautiously confident that () is true	$0.70-0.85$
More confident than not confident that () is true	$0.50-0.70$
Neither confident nor not confident that () is true (or	0.5
false) - no idea	$0.30-0.50$
More confident than not confident that () is false	$0.15-0.30$
Cautiously confident that () is false	$0.05-0.15$
Highly confident that () is false	$0.01-0.05$
Reasonably certain that () is false	Less than 0.01
Practically certain that () is false	

Process Tracing tests

- Three strong tests (with high probative value)
- Smoking Gun
- Hoop Test
- Doubly Decisive
- One weak test (with low probative value)
- Straw-in-the-Wind
- The Smoking Gun: if observed, it CONFIRMS the theory but, if not observed, does NOT WEAKEN it
- The Hoop Test: if not observed, it WEAKENS the theory but if observed, does NOT CONFIRM it
- The Doubly Decisive: if observed, it confirms; if not observed, it weakens.

Likelihood Ratio = Sensitivity / Type I Error

Type I Error $=(1-$ Specificity $)=P\left(\left.E\right|^{\sim} T\right)=1-P\left(\left.\sim E\right|^{\sim} T\right)$

Likelihood Ratio = Sensitivity / Type I Error

Relation with the Confusion Matrix

〔 Everyone always says there's nothing worse than the jigsaw with a single piece missing, but a jigsaw that is really useless is one that doesn't come in a box. One that hasn't got a picture.

- Inspector Tanner

Getting the Picture

Understanding a system will help to make better policy, even without the possibility of prediction.

Dependency Models

Dependency Models

Dependency Models

Dependency Models

Special kind of dependency model

acyclic graph

Agent based Modelling

In the beginning there was nothing . . .

. . . but then grew the . . .

Environment

. . . which was populated by . . .

Agents

Environment

. . . that interacted, exchanging information

Agents

Interactions

Environment

. . . and moved about autonomously

Agents
Autonomy
Interactions

Environment

. . . following rules of behaviour*

Agents
Autonomy
Interactions
Behaviour
Environment

* follow my friends

cress

Simulating the Housing Market

Individual behaviour leading to

 macro-level patterns- We have agents with plausible individual (micro) behaviour
- Buyers
- Sellers
- Estate Agents

The credit crunch

A bounce

LTV changed from 100% to 60%

"Uncertainty is an uncomfortable position. But certainty is an absurd one."

\author{

- Voltaire
}

Summing Up

Society is a complex system
If we want to understand society we need to understand causality - in the context of all the other complex features.
There are some (cool) methods that grapple with that problem.

"If you judge, investigate."

-Seneca

