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Trophic Analysis of Directed Networks

• Joint work with Bazil Sansom and Sam Johnson

• Supported by the Economic & Social Research Council (ESRC) via the 
Instability hub of the Rebuilding Macroeconomics programme
managed by the National Institute of Economic and Social Research.

• Will concentrate here on its potential relevance to systems maps and 
related themes for evaluation of complex systems



Example directed network: from Alex Penn’s 
Participatory Systems Mapping guide

Contact: a.penn@surrey.ac.uk and p.barbrook-johnson@surrey.ac.uk  1 

 
 
Participatory Systems Mapping: a practical guide 
 
Participatory Systems Mapping is a participatory modelling 
methodology in which a group of stakeholders collaboratively 
develop a simple causal map of an issue during the course of a 
workshop. Stakeholders produce a map made up of factors, which 
can represent anything as along as they are expressed as a variable 
(i.e. can in some sense go up and down) and connections which 
represent causal relationships. The map is intended to represent 
what stakeholders believe to be the causal structure of their system. 
The map can be built using a white-board or simple pen and paper 
materials on a large table. The process of building a map can be 
hugely valuable to participants, the digitized version of the map can 
be a useful resource, and additional analysis can be conducted on 
the map created. 
 
Why use Participatory Systems Mapping? 
These types of models provide thinking tools which can be used for discussion and exploration of 
complex issues, as well as sense checking the implications of suggested causal links. Such “hands 
on” complexity science can increase stakeholder motivation and understanding of the scope of 
whole systems approaches. 

 
The diagram above is an example map. We can see the factors in the system represented by the 
rectangles, and the connections between them by arrows denoting the strength, direction, and nature 
(positive or negative) of the casual influence. 
 

The following eleven steps give a detailed breakdown of how to generate your 
own Participatory Systems Map (PSM). They are written so that you can use pen, paper, and 

post-it notes. 
 
 

11 Steps in creating 
Participatory Systems Maps 
in a workshop setting: 
 
1. Pick a focal problem 
2. Gather knowledge 
3. Pick a focal factor 
4. Brainstorm factors 
5. Consolidate factors 
6. Connecting factors 
7. Check the connections 
8. Collect factor & link info 
9. Map analysis 
10. Verification 
11. Scenarios 

 

A system map indicates 
relevant factors and 
causal relationships 
between them

BBE=bio-based economy



Trophic analysis reveals position of factors along the flow of 
influence and quantifies the (in)coherence of the flow

Incoherence 
F0 = 0.6

Edge weights coded as
Strong=1, 
Medium = 2/3, 
Weak=1/2



How does trophic analysis work?

• It tries to assign levels to the nodes so that the level increases by 1 
along each edge

• More precisely, let wij > 0 be the weight of edge from i to j, and 
minimise Sij wij (hj-hi-1)2 / Sij wij over vector h. Then let incoherence 
F0 be the minimising value.

• Get a unique solution h, up to adding an arbitrary constant in each 
weakly connected component

• It is given by solving linear system L h = v, where L is the symmetrised
weighted graph-Laplacian and v is the imbalance vector 
vj = Si wij – Si wji.

• There are other versions: Levine; Shuaib et al; and equivalent 
formulation by Iyetomi et al



Example 2: Renewable heat incentive system map from 
Pete Barbrook-Johnson 
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The Map
Figure 1 shows the full 
RHI map. 
Emboldened lines 
represent particularly 
strong or important 
causal connections, 
and emboldened 
factors are core 
concepts or centres of 
clusters of factors.

Legend

Defra Policy

Focal factor

Positive causal 
relationship: increase in 
A leads to increase in B, 
or decrease in A leads 
to decrease in B
Unclear or complex 
causal relationship 
(e.g. not sure, depends 
on other things, tipping 
points)

Negative causal 
relationship: 
increase in A leads 
to decrease in B, 
decrease in A leads 
to increase in B

BEIS Policy

DfT Policy

orange border:
Potentially volatile factor
pink border:
Risk

Deployment and business case OutputsPolicy



Replotted with trophic level on horizontal

Incoherence
F0 = 0.2

BEIS Policy

DfT Policy

Defra Policy

Focal factor

Risk

Volatile



What does incoherence F0 measure?

F0 =        0                                      1/9=0.11                                   2/5=0.4 1

The answer (see appendix A.8) is that if ρ < r then ‖x(t)‖1 → 0 as t → ∞, whereas if ρ > r and condition K
holds (xn > 0 for some node n in or leading to a ‘key’ communicating class), then ‖x(t)‖1 → ∞, where the
spectral radius ρ of W is the largest absolute value of the eigenvalues of W. Actually, because W has all
entries non-negative, it has a real positive eigenvalue of maximum modulus, so that is ρ. Indeed,
under condition K,

t!1 log kx(t)k1 ! log
r

r

! "
as t ! 1: (6:7)

We have already mentioned that a maximally coherent network has all its eigenvalues 0, so F0 = 0
implies ρ = 0. This suggests that ρ, scaled by a suitable measure of the strength of W, might correlate
positively with F0. The strength of W can be measured by any norm, for example the 2-norm ‖W‖2.
This can be defined in various ways, of which perhaps the simplest is that kWk22 is the largest
eigenvalue of WTW (which is necessarily real and non-negative and is equal to that for WWT). For
any operator-norm, ρ≤ ‖W‖. Thus ρ/‖W‖ is contained in [0, 1], like F0. An advantage of the
particular choice of the 2-norm is that ρ = ‖W‖2 if W is normal. So we define the scaled spectral radius

rs ¼
r

kWk2
: (6:8)

Then we deduce from the subsection on normality various cases with simultaneously F0 = 1 and ρs = 1.
Thus we look at how F0 correlates with the scaled spectral radius ρs in figure 13. In appendix A.11, we

give heuristic arguments in favour of a relation

rs # exp
1
2

1! 1
F0

# $# $
: (6:9)

We can also consider a simple dynamical model for contagion in continuous time,

_xn ¼
X

m
xmwmn ! rxn, (6:10)

with r a recovery rate (without immunity). The solution can be written in vector-matrix form as

x(t) ¼ x(0) e(W!rI)t: (6:11)

Again one can ask whether the total infection ‖x(t)‖1 grows or decays. This is now a question of the
maximal real part of the eigenvalues of W, but because W is non-negative, the maximal real part of
eigenvalues is actually ρ. So the answer is growth for ρ > r, decay for ρ < r. So again it is interesting to
link ρ with F0 and relation (6.9) will be useful.

Some other dynamics on networks are discussed in appendix A.9.
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Figure 13. Scaled spectral radius ρ/‖W‖2 against trophic incoherence F0 for some networks. The curve corresponds to the
coherence-ensemble prediction of rs ¼ exp (1=2(1! 1=F0)).
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Networks drawn using PRiSM, thanks to Nigel Gilbert et al; equal weights assumed for calculation of F0.

F0 measures the failure of level differences to all be +1.
Some call it “circularity”.  In particular, existence of a cycle forces F0>0 and
F0=1 implies every edge is in a cycle, but 0<F0<1 does not imply any cycles.
Nonetheless, we conjecture that a quantification rs of cyclicity behaves 
typically like rs = exp((1-1/F0)/2).



Example 3: fuzzy cognitive map based on 
stakeholder workshop in Bolivia



Replotted with trophic levels

Incoherence
F0 = 0.06

Exogenous

Outcome



Systems map for the article “Garden instead of concrete: 
how Paris meets climate change” 



Replotted with trophic levels

0 4.1

Incoherence
F0=0.57



Alternative terminologies, e.g.

Mulder, P. (2012). Influence Mapping. Retrieved from ToolsHero: 
https://www.toolshero.com/project-management/influence-mapping/



Influence mapping

Simon Henderson 
& Stuart Astill

But they put Bayesian belief 
propagation on the networks
so I think have to make acyclic



Causal loop diagram, e.g for a life insurance 
company (wikipedia)



Outcome pathways for Theories of Change

This example from wikipedia is for Child Welfare.
Often acyclic.  
Also known as a Results Chain or Logic Chart.
This example is perfectly coherent.

A subsidiary theme is Contribution Analysis: 
quantifying the influence of a decision on an outcome



A refinement: specify target level differences

• e.g. for feedforward motif could put target level differences as shown 
and get perfect coherence.

• More generally, minimise

over h; equivalent to solving L h = v, with 

• Maybe one could allow target height differences to choose themselves, 
leaving incoherence to come only from cycles?

• As an extreme, we make a method to assign strengths to teams based on 
a set of pairwise comparisons that is not necessarily complete.

6.3. Cycles
Bya cycle in a directed network,wemean a closedwalk in it. Awalk is any sequence (ej)Jj¼1 of edges such that
for 1≤ j < J the head of ej is the tail of ej+1. It is closed if the head of eJ is the tail of e1. In contrast to much of the
graph-theory literature, we allow a cycle to have repeated edges and repeated nodes, but we prefer to use
the shorter andmore familiarword ‘cycle’ than ‘closedwalk’. In particular, we allowa cycle to be a periodic
repetition of a shorter cycle. The weight wg of a cycle γ is the product of the weights along its edges.

A maximally coherent network (F0 = 0) has no cycles, because it has height difference +1 for every
edge, whereas along a cycle the net change in height has to be zero. There are acyclic graphs with
F0 > 0, however, for example the feed-forward motif (6.4).

A maximally incoherent network (F0 = 1) must have cycles. This is because it is balanced and so some
of the flow that leaves a node must eventually come back to it (see appendix A.12). In fact, we deduce
that every edge is in at least one cycle.

So these results suggest some relation between trophic incoherence F0 and a quantifier of cyclicity.
The total weight of cycles of length p is given by the trace of the pth power of W: tr Wp, because

(Wp)mn ¼
P

j wn0n1 . . .wnp"1np and the trace of a matrix is the sum of its diagonal entries. Note that this
counts each cyclic permutation of a cycle as a different cycle. One might expect it to behave
asymptotically exponentially as p → ∞, but for example if k points in a circle are each connected to
just their clockwise neighbour by an edge of weight x, then tr Wp ¼ kxp when p is a multiple of k, 0
otherwise. The tidy way to study the sequence tr Wp is to form the zeta function

z(z) ¼ exp
X1

p¼1

zp

p
tr Wp, (6:12)

for complex z close enough to 0 (some authors define ζ(z) to be the reciprocal of this). Then a notion of
the cyclicity of W is the reciprocal of the radius of convergence of the power series. This is just
lim sup p!1 (tr Wp)1=p. Using log det ¼ tr log, the zeta function can equivalently be written as
det (I " zW)"1. The reciprocal of its radius of convergence is the spectral radius ρ. So actually, the
appropriate measure of cyclicity is ρ relative to some measure of the size of W. We take again ‖W‖2
for the latter. Thus, cyclicity ρ/‖W‖2 = ρs is related to F0 exactly as is the stability of our simple
contagion processes. In particular it is 1 for any normal network.

In appendix A.13, we relate ζ to the prime cycles, those which are not repetitions of a shorter cycle,
and furthermore to the elementary cycles, those which do not repeat a node.

7. Extension to arbitrary target height differences
So far, we have taken all the target height differences equal, but there are contexts in which this might not
be appropriate. Instead of trying to fit the height differences along each edge to 1, it might be preferable
to fit them to more general target height differences τmn. For example, if two nodes m, n are subunits of a
single company with m supplying n it might be reasonable to assign a value τmn less than 1. Or if there is
a feed-forward motif that one does not want to contribute to circularity, then one could assign target
height difference 1=2 to the edges for the indirect route and 1 to the direct edge.

The extension of our method to this setting is straightforward. Minimize

F(h) ¼
P

mn wmn(hn " hm " tmn)2P
mn wmnt2mn

,

over h. This is equivalent to solving Λh = v with now vn ¼
P

m (wmntmn " wnmtnm). If we set F0 to be the
minimizing value of F and zmn = (hn− hm)/τmn and weight the zmn by wmnt2mn, then we obtain all the same
properties as before: 0≤ F0≤ 1, !z ¼ 1" F0, etc.

One context in which it is natural to use the data to set the target height differences is quantitative
pairwise comparison, for example, use of goal differences in a football league to infer relative
strengths of teams. Then it is natural to make each game carry equal weight and the outcome of our
extended method is trophic levels representing the relative strengths of the teams [47].

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:201138
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Example: Women’s Super League

PROOF

Away
Home ARS BIR BHA BRI CHE EVE LIV MCI MUN REA TOT WHU

Arsenal 2–0 4–0 11–1 1–4 – 1–0 1–0 – – – 2–1
Birmingham City – – 0–1 0–6 0–1 2–0 0–2 – – 1–1 –
Brighton & Hove Albion 0–4 3–0 – 1–1 1–0 1–0 – 1–1 2–2 0–1 1–3
Bristol City – 0–2 0–0 0–4 – 0–1 0–5 – – 1–2 –
Chelsea 2–1 2–0 – 6–1 – – 2–1 1–0 3–1 1–0 8–0
Everton 1–3 – 2–0 2–0 – – 0–1 2–3 3–1 3–1 –
Liverpool 2–3 – – 1–1 1–1 0–1 – – 0–1 – 1–1
Manchester City 2–1 3–0 5–0 1–0 3–3 3–1 1–0 1–0 – – 5–0
Manchester United 0–1 – 4–0 0–1 – 3–1 2–0 – 2–0 3–0 –
Reading 0–3 1–0 – 3–3 – 3–2 – 0–2 1–1 3–1 2–0
Tottenham Hotspur 0–2 – 1–0 – – 2–2 1–0 1–4 0–3 – 2–1
West Ham United – 1–0 2–1 – 1–3 – 4–2 – 3–2 2–3 0–2
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Can allow for a home advantage by minimising
S wmn(Gmn-Sm+Sn-b)2 over S and b,
where Gmn is goals for m minus goals for n in a match 
at m’s home and wmn is the number of such matches.

Could also compute the incoherence of the results. b=0.38



What do we want systems maps (and their variants) to achieve?

• One of the goals of participatory systems mapping is the engagement of 
stakeholders

• Another is to recognise the complexity of most policy environments, e.g. 
cycles

• Contribution analysis endeavours to attribute a quantification of cause to 
interventions, but usually based on an acyclic systems map

• Trophic analysis lays out a preferred horizontal coordinate, indicating how 
far along the flow of influence is a given factor

• It also quantifies the extent to which the network fails to be perfectly 
coherent, with factors arranged in layers and level differences = 1

• But the incoherence F0 confounds cycles with feed-forward motifs and the 
method does not yet take signs of edges into account
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