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All participants are muted. Only the Presenters can speak. The webinar will start at 13:00 BST. 
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MOTIVATION FOR THE PAPER



“DISCIPLINING” THEORY-BASED EVALUATION
• In Contribution Analysis, Realist Evaluation, some forms of Systems-

Based evaluation:

• Often a loose connection between theory and data

• Lack of transparency on the dialogue between theory and evidence

• Particularly on how empirical observations change the theory

• In Process Tracing there’s a formal assessment of the weight of 

evidence for a certain theory

• Smoking Gun, Hoop Test, Doubly-Decisive, Straw-in-the-Wind

• But it’s rudimentary for some aspects; what is assessed:

• Direction: strengthening, weakening

• Probative value: strong or weak (binary, not fine-grained)

• Advocate the adoption of a formal Bayesian approach grounded on the 
Confusion Matrix



THE CLARITY CONFUSION MATRIX



THE BENEFITS OF A FORMAL BAYESIAN APPROACH

➤ Reality is nuanced

➤ Instead of saying “conclusive” (for 
confirmation or disconfirmation)

➤ Measure Sensitivity and Specificity

➤ Any real number from 0 to 1

➤ (doesn’t have to, can also be a scale 
of qualitative confidence levels)

➤ Measure the power to strengthen or 
weaken the theory

➤ For each theory-observation 
combination 



BAYESIAN UPDATING WANTS PROBABILITIES

• Not a strict requirement (you can work with qualitative ranges)

• But that’s the “natural” way of working with the Bayes formula

• How to estimate those probabilities?

• Let’s forget the prior for now (we can set it at 0.5 and assume 

ignorance)

• Sensitivity: Probability of making a specific observation E under the 

assumption that the theory is true – P (E|T)

• Type I Error: Probability of making a specific observation E under 

the assumption that the theory is NOT true – P (E|~T)



ESTIMATING BAYES FORMULA PROBABILITIES
• Traditionally, there are two strategies:

• Empirical frequencies (mostly not available in evaluation)

• Subjective Probability (elicitation of expert judgement / opinions)

• Why not do it with computer simulation?

• If we manage to set computer models so that they represent 

different theoretical assumptions, we can run them until they 

produce estimates of quantities we are supposed to empirically 

observe

• Then, once we observe the quantity in reality, we can “reason 

backward” and identify the model settings that are most likely to 

produce that (which is supposed to represent the “real” theoretical 

parameters)



GENERATING PROBABILITIES

➤ We “know” the probability of throwing 
a 6 with a die as 1/6 because it has 6 
sides. 

➤ However, if the die is weighted the 
assessment is wrong. 

➤ Then we have to throw again and again 
and again to “learn” the probability. 

In the real world we constantly have to learn - but often cannot repeat.



AGENT-BASED MODELLING

Agent-based modelling is a computational  method that enables a 

researcher to create, analyse, and experiment with models composed 

of agents that interact within an environment. 

Gilbert 2008, pg 2



THE TELL ME MODEL
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THE TELL ME MODEL

➤ Epidemiology model

➤ Agents react to levels of perceived risk of 
being infected

➤ They assess risk through 

➤ Others they know being infected 

➤ How far away the infection is

➤ They adjust their behaviour according to 

➤ The perceived risk 

➤ The social norms that surround them



THE TELL ME MODEL
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THE TELL ME MODEL

➤ Epidemic description

➤ Social Networks

➤ Protective behaviours 

➤ can be reversible, e.g. hand washing, 
masks etc

➤ or irreversible e.g. vaccination. 

How many get sick? 

How many die?
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THE TELL ME MODEL

➤ We use the model over a set of parameter variations for efficacy of protective 
behaviours

➤ The output data is a set of frequencies of particular outcomes, in relation to input 
settings

➤ This dataset is now used to infer backwards, about the likelihood of which kind of 
setting we are in in the “real world”
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ABM AND THE REAL WORLD

30% of the population were 
infected. 
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ABM AND THE REAL WORLD

30% of the population were 
infected. 
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ABM AND THE REAL WORLD

30% of the population were 
infected. 

Protective efficacy high

Protective efficacy low

Protective efficacy medium
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ABM AND THE REAL WORLD

30% of the population were 
infected. 

Protective efficacy high

Protective efficacy low

Protective efficacy medium
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ABM AND THE REAL WORLD

30% of the population were 
infected. 

T1 low and Sensitivity low

T1 medium and Sensitivity low

T1 and Sensitivity for 30% is high 

Protective efficacy high

Protective efficacy low

Protective efficacy medium
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ABM AND THE REAL WORLD

30% of the population were 
infected. 

T1 low and Sensitivity high

T1 high and Sensitivity med-high

T1 low and Sensitivity high 

Protective efficacy high

Protective efficacy low

Protective efficacy medium
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Good corroboration that 
protective behaviour has 

medium efficacy.  



IS THIS REASONABLE? 

➤ Vaccine efficacy 70-90% 

➤ Social distancing, masks, no large gatherings, schools closed, etc. efficacy of x?

➤ We constantly reason forwards and backwards to understand the efficacy of 
certain things. That is in the end what lies at the heart of the step by step 
opening of the UK roadmap. 

https://www.nytimes.com/interactive/2021/01/24/us/covid-vaccine-rollout.htmlx



DISTRIBUTION OF RESULTS UNDER THE THREE 
EFFICACY ASSUMPTIONS



PROBABILITIES OF OBSERVING GIVEN 
PROPORTIONS OF INFECTED POPULATIONS BY 

LEVELS OF EFFICACY
Proportion of population ever infected

Level of efficacy

<=0.275 >0.275 

& 

<=0.29

>0.29 

& 

<=0.30

>0.30 

& 

<=0.31

>0.31

Ideal 1.0 0.53 0.30 0.13 0.04 0

Improved 0.9 0.09 0.27 0.26 0.24 0.14

Standard 0.8 0 0.02 0.01 0.03 0.94

➤ We tried to “cut” the space of empirical possibilities (for prop of IP) into areas that 
would be good at predicting efficacy levels

➤ We first tried five intervals that we later assembled into three



EXTRACTING THE POSTERIORS FOR BAYESIAN 
UPDATING WITH THE PRIORS ALL SET AT 0.33 AND 

A NARROW CENTRAL INTERVAL
Level of efficacy Posteriors after observation of evidence Sensitivity Type I 

Error

Likelihood 

Ratio

Posterior-Prior

Ideal 1.0 (prior 

= 0.33)

Infected population <= 0.29,

posterior =  0.68

0.83 0.19 4.37 0.35

Improved 0.9 

(prior = 0.33)

I.P.  0.29 < p <= 0.30,

posterior = 0.65

0.26 0.07 3.71 0.32

Standard 0.8 

(prior = 0.33)

I.P. > 0.30, posterior = 0.69 0.97 0.21 4.62 0.36

➤ Relatively unsatisfactory results

➤ The chosen intervals for the tests (prop of IP) weren’t very good at predicting efficacy

➤ The central interval was a Smoking Gun for “improved” because it was very narrow

➤ The right interval was a Hoop Test for “standard”



EXTRACTING THE POSTERIORS FOR BAYESIAN 
UPDATING WITH THE PRIORS ALL SET AT 0.33 AND 

A LARGER CENTRAL INTERVAL

Level of efficacy Posteriors after observation of evidence Sensitivity Type I 

Error

Likelihood 

Ratio

Posterior-Prior

Ideal 1.0

(prior = 0.33)

I.P. <= 0.275,

posterior =  0.84

0.53 0.05 10.60 0.51

Improved 0.9 (prior = 0.33) I.P.  0.275 < p <= 0.31,

posterior = 0.58

0.77 0.27 2.85 0.25

Standard 0.8 (prior = 0.33) I.P. > 0.31, posterior = 0.87 0.94 0.07 13.43 0.54

➤ The likelihood ratios for the first and third intervals are much better than before

➤ The first is a smoking gun for “ideal”; the second is a “doubly decisive” for “standard”

➤ Perhaps these aren’t very useful either because you could look at the charts and guess but 
our aim here was to present a proof of concept – the idea that you can estimate values for 
Bayesian TBE with computer-based simulation



PART OF A LARGER PROGRAMME

➤ ABM is time intensive 

➤ Integrating ABM with other empirical methods to investigate small parts of reality

➤ e.g. Castellani et al - QCA and ABM 
(https://www.springer.com/gp/book/9783319097336)

➤ Integrating with Participatory Systems Mapping?


