CECAN Webinar <u>Systems Approaches to Water Management and</u> <u>Infrastructure Planning for Zero-Pollution Targets</u> 17th June 2021 13:00 - 14:00 BST

Welcome to our CECAN Webinar.

All participants are muted. Only the presenter <u>Dr Ana Mijic Co - Director of the **Centre for Systems Engineering and** <u>Innovation (CSEI)</u> will be heard.</u>

The webinar will start at 1pm. The presenter will to talk to you for around 45 mins and will then select questions to answer.

Please submit your questions at any point during the webinar via the Zoom panel Q&A box only,.

Todays webinar will be recorded and will shortly available on the CECAN website, along with the presentation slides.

For further details of CECANs work :-

E Mail: <u>cecan@surrey.ac.uk</u> www.facebook.com/CECANEXUS Web: <u>www.cecan.ac.uk</u> Twitter @cecanexus

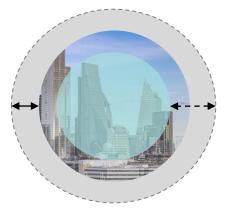
Systems Approaches to Water Management and Infrastructure Planning for Zero-Pollution Targets

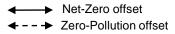
Ana Mijic^{1,2} and David Forrow³

¹Department of Civil and Environmental Engineering ²Centre for Systems Engineering and Innovation ³The Environment Agency

CECAN seminar, 17 June 2021 which we can address using systems approaches @CSEI_imperial #CASYWat www.imperial.ac.uk/csei

We face multiple challenges ...

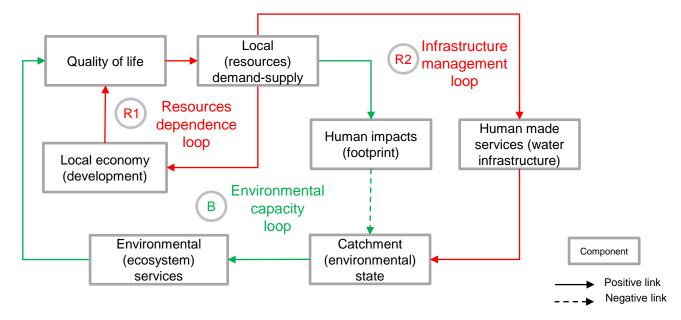

- Climate crises and environmental degradation
- The role of infrastructure and built land for human flourishing and managing natural environment
- The role of system use, operation and evidence-based decision-making


.... which we can address using systems approaches

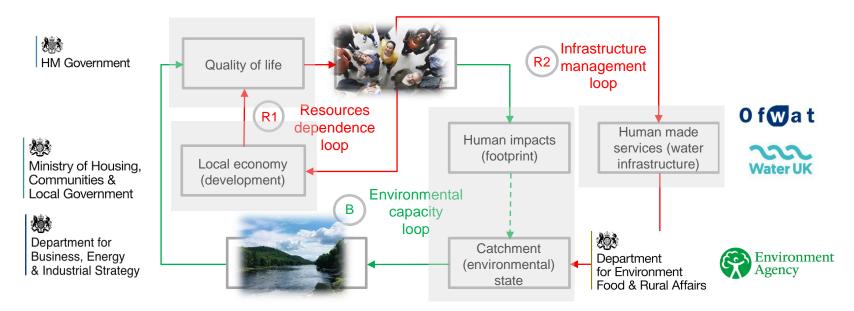
Zero-Pollution Infrastructure concept

- 'Zero-pollution infrastructure' (ZPI) is an adaptive system of systems intrinsically linked to people and the natural environment
- The ZPI thinking will help to:
 - better understand targets for offsetting environmental impacts
 - improve resilience, safety and sustainability through policy, technology and behaviour change options
 - set development goals within the capacity of natural systems

.... which we discuss through water management systems analysis


CASYWat project objectives

- To develop a novel concept of Systems Water Management (SYWM) in the context of a 25YEP as a framework for understanding system complexity in the context of water planning
- To propose a generic approach to SYWM mapping and showcase the value of a systems-level analysis
- To inform the Environment Agency and its stakeholders about lessons learnt, the potential of the work and future improvements



Chief Scientist's Group report Date: May 2021

Systems water management (SYWM) meta-model

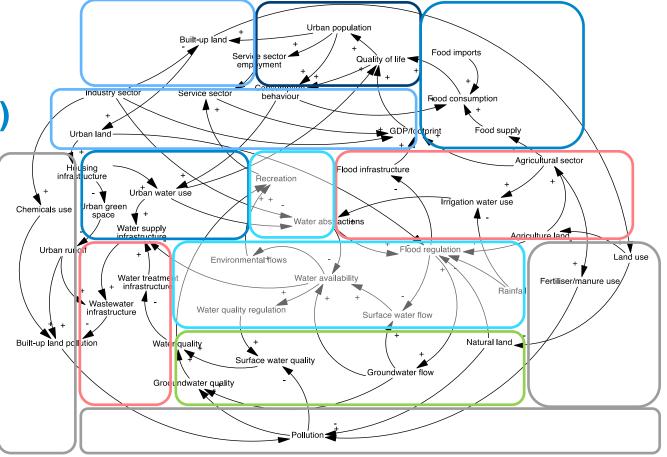
Who is responsible for the system?

SYWM approach

Catchment state (CS)	Environmental services (ENS)	Human impacts (HI)				
CS1 – Hydrological processes CS2 – Climate processes CS3 – State of water (water quantity and quality) CS4 – State of land (natural and human habitat capital)	ENS1 – Water availability ENS2 – Environmental flows ENS3 – Water purification capacity ENS4 – Flood regulation capacity	HI1 – Water pollution (treated and untreated discharges) HI2 – Land impacts (sedimentation, erosion) HI2 – Physical modifications HI4 – Ecological (land) footprint				
Human made services (HMS)						
HMS1 – Water abstractions HMS2 – Water supply infrastructure HMS3 – Wastewater infrastructure HSM4 – Flood infrastructure	HMS5 – Crop production HMS6 – Livestock farming HMS7 – Natural land management HMS8 – Recreational land management	HMS9 – Urban land management HMS10 – Urban infrastructure HMS11 – Service infrastructure HSM12 – Industry infrastructure				
Local demand-supply (LDS)	Quality of life (QoL)	Local economy (LE)				
LDS1 – Population growth LDS2 – Water and food demand LDS3 – Infrastructure planning or land development LDS4 – Human behaviour and decisions	QoL1 – Regional sustainable development QoL2 – Economic growth QoL3 – Role of imports and exports QoL4 – Local development plans	LE1 – Economic activities and sectors LE2 – Employment LE3 – Providers, users and beneficiaries LE4 – Embodied environmental impacts				

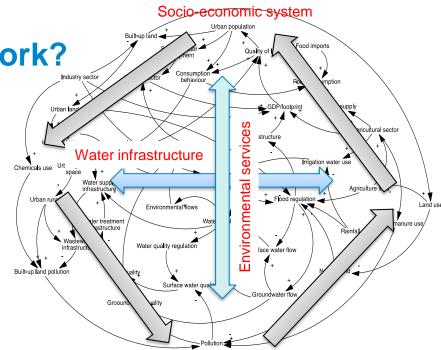
Application case studies

Steps	Regional water management system	Lake water quality system
1. Understanding: Review of high-level information, scientific papers and reports to understand	the overall context of the water management system	the specific selected environmental problem (for example, lake water quality)
2. Structuring: Defining second-tier variables and their links to create systems map that	will give a high-level structure of the interdependences that influence water management	will contain the same information as the high- level regional systems map, but with more detail linked to the specific problem analysed
3. Analysing: Mapping the feedback loops and finding patterns defined by the SYWM meta-model to	discuss management goals and understand which processes need to be coordinated to enable the agreed systems level water management balance	map a range of possible systems level interventions (leverage points) that could enable local development without environment degradation


SYWM maps (1)

Regional water management (RWM) systems map

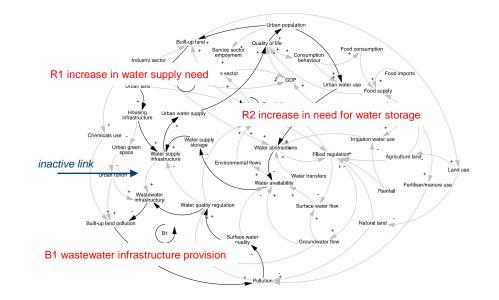
Quality of life
Level of development
Resources demand-supply
Water infrastructure
Environmental footprint
Ecosystems services provision
Environmental state


Imperial College

London

Does natural capital concept work?

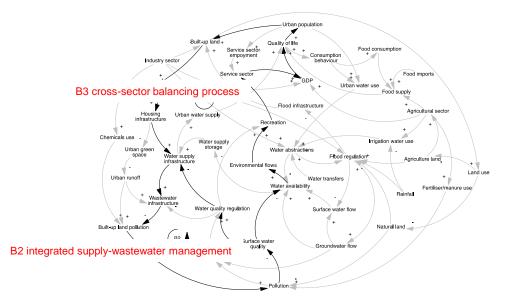
- Revaluing of land-dependent and other economic sectors
- Including built-up land in the natural capital analysis
- Redefining the role of environmental services



Environmental system

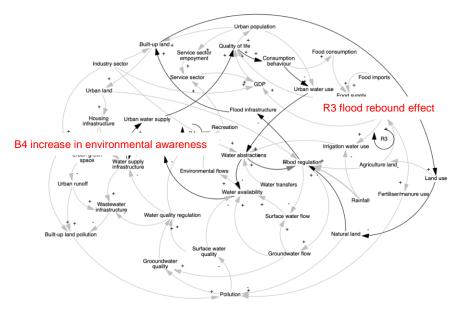
Implications for water management planning (1)

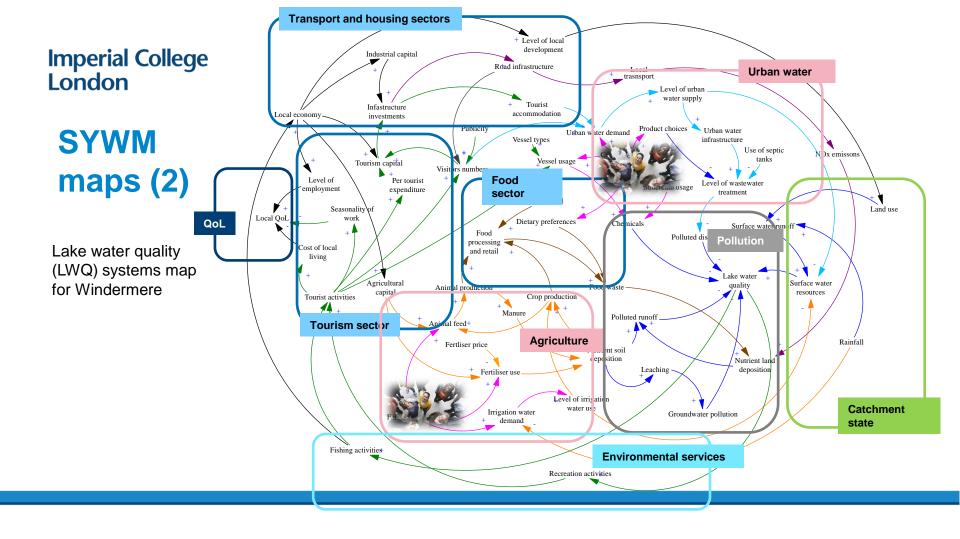
Demand and integrated planning


 need for coordination between the water and housing/urban planning sectors
role of urban water use and consumption behaviour

Implications for water management planning (2)

Coordinated decisions

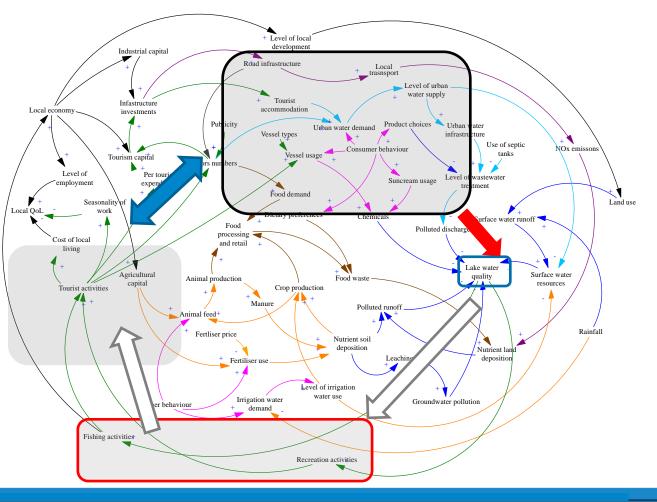

- use of water quality indicator for water infrastructure planning and operation
- maximising the use of natural systems (e.g., river water flows) in ES provision



Implications for water management planning (3)

Unintended consequences

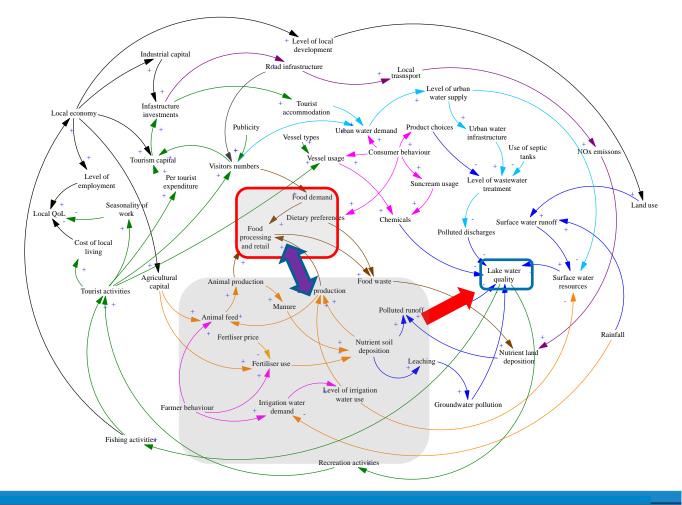
 interactions between flood management, urbanisation and consumption behaviour
potentially leading to an increase in flood risk if water demand reductions result in decreases in abstractions and increases in environmental flows



Insights (1)

The role of lake environmental services

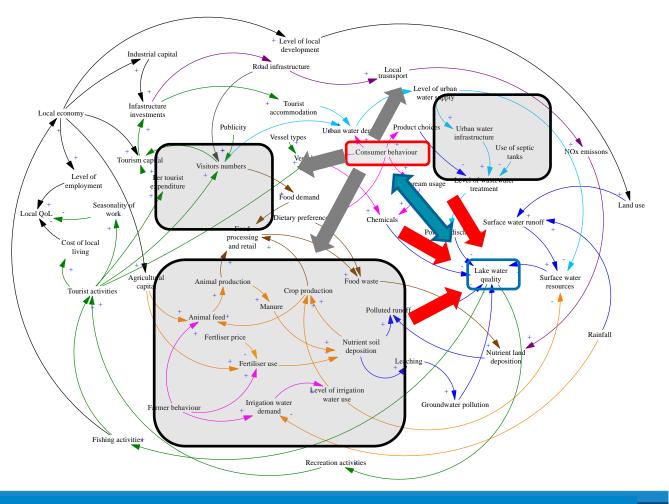
- Direct provision of benefits relevant for local tourism
- Need to minimise impacts from the business operation and activities to maintain the future sustainability of the business



Insights (2)

Link between the local food supply and use

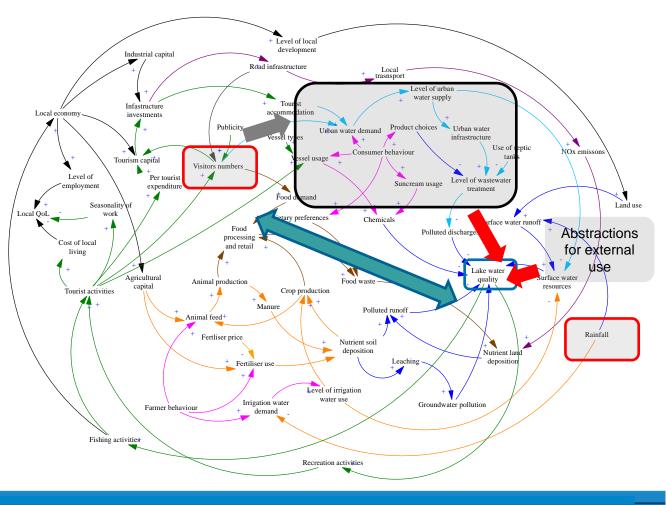
 Local decoupling of agriculture activities and food supply (and hence tourism) could give a false view of the security



Insights (3)

The role of consumer behaviour

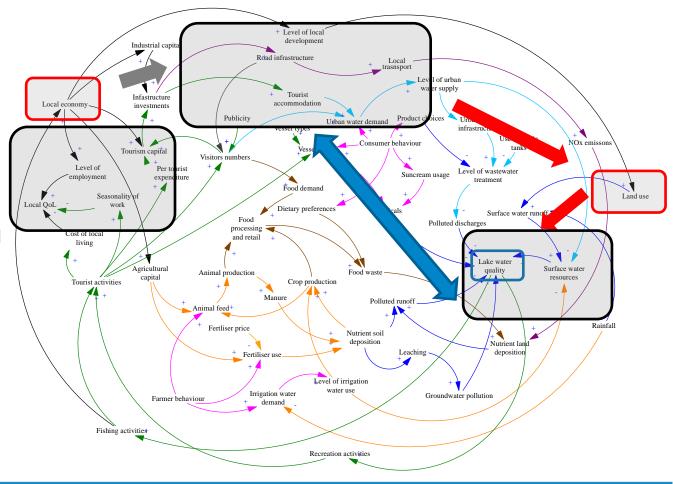
- Driving demand and hence creating a link between food production and retails sectors and provisional services
- Driving the tourist sector decisions and influencing a range of activities



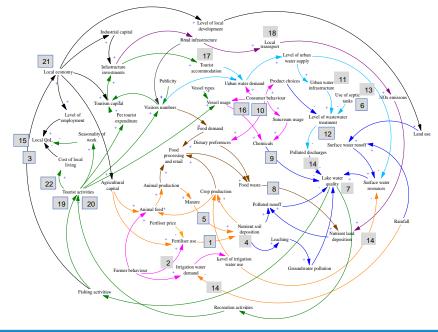
Insights (4)

Integrated system management

- Highly seasonal demand and pressures on the system linked with the natural availability of water supply
- The role of water abstractions in influencing water levels in the lake, and hence the ability of the lake to self-purify



Insights (5)


Link between the local economy and land decisions

- Highly seasonal demand and pressures on the system
- The role of water abstractions in influencing water levels in the lake
- Increased risk of flooding

LWQ leverage points*

Level	Type of intervention in the system (in increasing order of effectiveness)	Application for the LWQ management and control	Intervention/policy option [numbers correspond with notation from Appendix C		
11	Introducing new standards	Managing direct impact on lake water quality	Limit pollution loads [1, 8, 9]		
10	Increasing buffering capacity	Adding new elements in the system that increase the system capacity to manage pollution	Increase wastewater treatment capacity, reduce direct pollution or enhance self-purification [2, 4, 5, 6, 7, 12]	Technical	
9	Changing the system structure	Adding new elements in the system that reduce/minimise environmental impacts	Upgrade of septic tanks, adopting green infrastructure, N recycling, sustainable transport and green hotels [11, 13, 17, 18]		
8	Providing timely information	Information that can positively influence consumer behaviour change	Food labelling and promoting local consumption [10, 16]	Information	
7	Designing positive feedback loops	Maximising the link between the local environment and people who live there and care about it	Education activities and local employment [19, 20]	sharing interventions	
6	Reducing the strength of the reinforcing loop	Multifunctional solution that targets multiple stocks and flows in the system	Wastewater recycling and reuse [14]		
5	Enhancing information flows	Providing information at a system level that can be used for collaborative decisions	Develop nutrient- balance programmes and participatory approaches [3, 15]	Large-scale interventions socio-technical interventions	
4	Changing the system rules	Direct impact on all components in the system	Introduce new environmental and visitor taxes [21,22]		
3	Improving the system's capacity to self-organise	Shifting the decision focus onto the local quality of life and adjusting the local economy to the level of local ESS provision	Participatory integrated catchment management [15]	Whole-system restructuring	

*Meadows, D.H., 1999. Leverage points: Places to intervene in a system.

What we have learnt

- The value of systems approach is to showcase the complexity and open a dialogue a SYWM (or any other) meta-model could be a good starting point
- Systems maps are useful to communicate key interdependences and summarise intervention across a socio-technical domain
- The work is by no means comprehensive, and it should be expanded to include other systems and sectors
- A true value of the approach will be proven by bringing it in front of actors, decision makers and citizens to co-design the maps and discuss solutions

Systems Approaches to Water Management and Infrastructure Planning for Zero-Pollution Targets

Ana Mijic^{1,2} and David Forrow³

¹Department of Civil and Environmental Engineering ²Centre for Systems Engineering and Innovation ³The Environment Agency

CECAN seminar, 17 June 2021 #CASYWat @CSEI_imperial Centre for Systems Engineering and Innovation